Scalable Clearance of Host Cell Protein with Novel Mixedmode Resin HCPure[™]: Sf9 and HEK293 case studies

K. Morante, C. Jones, J. Lembo, C. Burdett, I. Scanlon, L. Knightley, C. Booth Astrea Bioseparations, Horizon Park, Barton Road, Comberton, Cambridge, CB23 7AJ, UK

Abstract

Removal of host cell proteins (HCP) and final product purity are critical to effective therapeutic outcomes. A range of negative outcomes can occur as a consequence of failing to effectively clear the final sample of HCPs, from changes in therapeutic effectiveness to immunogenic responses in the patient.

Multishep purification processes are typically followed to ensure HCPs are removed. Mixed-mode chromatography can be used to streamline the polishing process by utilizing both hydrogen bonding and hydrophobic interaction such and the constraint and streamline in processing time, and a reduction in buffer and materials used.

HCPure" host cell protein clearance resin from Astrea Bioseparations and its affiliates is a mixed-mode chromatography resin, designed for the removal of host cell proteins, host cell DNA, and high molecular weight aggregates.

Here we demonstrate that the unique binding profile allows for two key advantages: utilization of mixed-mode to create a highly tuneable purification platform for a variety of conditions, and the ability to purify feed streams that other resins can struggle to effectively clean.

RoboColumn[®] Screening for HCPure[™] Performance

IgG producing HEK293 feedstock

A design of experiments (DoE) screen was carried out for the polishing step of a post-affinity IgG rich feedstock derived from HECP35 cells, comparing the performance of HCPure' to another commercially available mixed-mode adsorbent. The screen used a full factorial design assessing the effect of conductivity (6 - 18 mS/cm) and pH (pH 6 - 8) on IgG yield and HCP removal. 200 µL RoboColumns* were used to better represent typical chromatography conditions.

HCPure" demonstrated robust performance across the full range of pH and conductivities assessed, with high IgG yield and separation from HCP.

Under the same conditions the commercial alternative showed pH related performance with increased IgG binding with increased buffer pH.

HCPure**									
Load condition	lgG load (mg/mL ads)	Average IgG NB Recovery (%)	HCP Load (ppm)	Average HCP NB Recovery (ppm)	Average Relative Log Clearance	Average Purity Fold Change			
Load (pH 6, 6 mS/cm) n=3	12.56	98.93	106	47	0.36	2.3			
Load (pH 6, 18 mS/cm) n=3	9.96	94.35	137	51	0.43	2.7			
Load (pH 7, 12 mS/cm) n=4	9.86	101.79	109	55	0.30	2.0			
Load (pH 8, 6 mS/cm) n=3	11.48	106.76	89	47	0.28	1.9			
Load (pH 8, 18 mS/cm) n=3	9.59	96.72	138	48	0.46	2.9			

Summary			Expression System						
The mixed mode HCPure [®] resin from Astrea Bioseparations has been screened as a polishing step for a variety of			СНО	E.coli	Pichia	HEK	Sf9		
targets and expression systems. For expression systems typically used in the cell and gene therapy field, such as HEK293 and Sf9, screening of HCPure	Target	IgG	х			х			
		Vκ		x					
against a range of loading conditions and compared to another commercially available mixed-mode adsorbent		Vh			x				
demonstrated the robust performance of HCPure [®] .		AAV				x	x		

HCPure" showed minimal influence from buffer conditions on target yield along with separation of the target from HCP. Furthermore, the ability of HCPure" to separate HEK293 HCP from different AAV serotypes directly from the post-affinity storage buffers was demonstrated at screening and research scale, illustrating the potential of HCPure" as a platform technology.

2 AAV9 producing Sf9 feedstock

A DoE screen was carried out for the polishing step of a post-affinity AAV9 rich feedstock derived from SI9 cells, comparing the performance of HCPure[®] to another commercially available mixed-mode adsorbent. The screen was performed in 200 µL RoboColumns[®] and used a full factorial design to assess the effect of pH (pH 6 · 8) and load volume (1 · 4 mL) on AAV9 yield and HCP removal.

HCPure[~]

HCPure" showed improved purity performance at lower pH and lower load volumes. However, HCPure" also demonstrated high AAV9 recovery across the range of pH and load volumes assessed.

yield

ial Alternative

HCPure™								
Load condition	AAV load (capsids/mL ads)	Average AAV NB Recovery (%)	HCP Load (ng)	Average HCP NB Recovery (ng)	Average Relative Log Clearance	Average Purity Fold Change		
Load (pH 6, 1 mL) n=3	3.98E+12	83.81	276	9	1.39	24.70		
Load (pH 6, 4 mL) n=3	1.59E+13	79.20	1104	46	1.28	18.93		
Load (pH 7, 2.5 mL) n=4	9.29E+12	93.47	651	132	0.67	4.66		
Load (pH 8, 1 mL) n=3	3.94E+12	97.92	245	79	0.48	3.05		
Load (pH 8, 4 mL) n=3	1.58E+13	86.79	981	475	0.25	1.79		

3 AAV5 & AAV9 producing HEK293 feedstock

Feedstocks for AN5 and AAV9, derived from HEK293 cells, were also polished using HCPure[®] in flow through mode. These were screened in 200 µL RoboColumns⁺ following a post-affinity capture step with commercially available AV4 affinity adorbents: 1 mL of the AV4 feedstocks were loaded onto HCPure[®] directly from their post-affinity storage buffers (- 30 mS/cm, pH 7.5). AV4 recoveries were around 80% with a 2-fold increase in purity.

Serotype	Replicate	AAV load (capsids/mL ads)	AAV NB Recovery (capsids/mL ads)	AAV NB Recovery (%)	HCP Load (ng)	HCP NB Recovery (ng)	Average Relative Log Clearance	Purity Fold Change
4.41/0	1	2.84E+13	2.32E+13	81.81	191	83.8	0.27	1.9
2	2		3.00E+13	105.60		95.3	0.33	2.1
4 AV/E	1	2.20E+13	1.70E+13	77.12	29.1	12.0	0.27	1.9
ARYS	2		1.77E+13	80.13		11.8	0.30	2.0

Scaled Up HCPure[™] Performance in Column Mode

4 AAV2 producing HEK293 feedstock

Polishing of an AAV feedstock on HCPure[®] has also been demonstrated in column mode. An AAV2 feedstock derived from HKC33 cells showed significant HCP burden post-affnity capture step with a commercially available AAV affnity adsorbent. HCPure[®] was packed into a SNAP[®] column (10 mm i.d. SNAP[®] column to a 10 cm bed height) and used in flow-through mode to purify the AAV2.

The AAV2 was loaded in the post-affinity storage buffer and fractions were collected across the load to monitor HCP recovery.

The SDS-PAGE illustrates the separation of AAV2 and HCP across the flow-through (FT) fractions, particularly FT1 and FT2.

Search: Astrea Bioseparations

Any data or results provided are only examples and do not provide any guarantee or similar results in future. The products of Astrea Bloeparations may be covered by or for use under one or more patients: astreabloeparations.com/patients

PURITY by DESIGN